Thursday, August 8, 2013

802.11 AC Primer: Whats all the fuzz about?

802.11ac is the upcoming big standard with tremendous increase in the data rates and throughput if properly utilized. Lets take a Brief/Raw look at the all the new features and how they help to achieve greater data rates and spectrum utilization.


PHY Features
  • 256 QAM
    • Very high order modulation scheme which increases the spectral efficiency only when used with beamforming technology, as high order modulation schemes are susceptible to noise and interference.
    • Compared to 11n 64QAM, spectrum efficiency improves by 33% 
    • Require about 30dB increase in SNR and coverage area is reduced (beam forming can solve this)
  • Sub-carriers
    • The maximum subcarriers that can be used with OFDM in WLAN is 64/20MHz, as of now 11ac uses this limit most efficiently, the next standard will run out the this limit, its time to increase it to 128/20MHz #IEEE :-)
      • 11a/11g ==> 52
      • 11n        ==> 57
      • 11ac      ==> ~59
  • 80 MHz
  • 160MHz
  • 80+80 MHz
    • Single continuous 160MHz and 2 discrete 80MHz can also be combined as 160MHz channel, increases the throuhgput but not the spctral efficiency.
  • 8 Spatial Streams
    • Sounds high, yeah for a single user it doesn't make sense, but with Multi User MIMO we can exploit this to increase the overall spectrum efficiency.
  • MU-MIMO
    • Instead of using all the Antennae for a single user (Even though some of them are not really used for some MCSes) we can use each antenna for a single user (max up to 4) and serve all of them in parallel.  This poses few issues like how do we identify each STA? What about group frames? How can a STA for which the data is not destined can ignore the frames? 
    • The answer to these questions is the additional features introduced in MAC as explained below. 
  • AES-256
  • GMAC and GCMP
    • Present in 11n in most of the enterprise AP's, now its official along with few other extra algorithms.

MAC Features


PHY ID's (Included in the VHT SIG field) 


Basic motivation is determine if the packet is not destined for you at the earliest possible stage (PHY instead of MAC) and go to micro sleep. (Most likely the case when MU-MIMO is in use)


GroupID


"An AP determines the possible combinations of STAs that can be addressed by an MU PPDU by assigning
STAs to groups and to specific user positions within those groups. (through a new GroupID management Frame).
So after decoding the TXVECTOR the STA can decided whether the frame is for itself (or) not."


Note: Group ID 0 is reserved for transmissions to AP and Group ID 63 is reserved for downlink SU transmissions

Partial AID: The partial AID is a non-unique identifier of a STA and is 9 bits conveyed in the TXVECTOR To identify whther the transmissions are destined to a STA/not, used in conjunction with GroupID.


PHY Power-saving with PHY ID's



TXOP Sharing 

In the TXOP won for a particular AC, we can also send frames destined for others AC's to other STA's as well.
"This mode only applies to an AP that supports DL-MU-MIMO. 
The AC associated with the EDCAF that gains an EDCA TXOP becomes the primary AC. TXOP sharing is allowed when primary AC traffic is transmitted in a VHT MU PPDU and resources permit traffic from secondary ACs to be included, targeting up to four STAs."


TXOP power save


Sounds weird but is a good feature. Basically in a TXOP for MU-MIMO, if the frame is not destined for the STA it can doze off for that TXOP duration.

"If the AP allows non-AP VHT STAs to enter Doze state during a TXOP, then a non-AP VHT STA that is in VHT TXOP power save mode may enter the Doze state till the end of that TXOP when one of the following
conditions is met:
— On receipt of a VHT MU PPDU, the STA determines that it is not a member of the group indicated by the RXVECTOR parameter GROUP_ID. 
— On receipt of an SU PPDU, the STA determines that the RXVECTOR parameter PARTIAL_AID is neither equal to 0 nor does it match the STA’s partial AID. 
— The STA finds that the PARTIAL_AID in the RXVECTOR matches its partial AID but the RA in the MAC header of the corresponding frame that is received correctly does not match the MAC address of the STA."
 References:

    1. IEEE Discussions: Spectrum Efficiency 
    2. IEEE Discussion: PHY Powersave
    3. 802.11ac-draft 5.0

No comments:

Post a Comment